ETY305 - Introduction to Materials Science

COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF MATERIALS SCIENCE AND			
	ENGINEERING			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	ETY305 SEMESTER 1			
COURSE TITLE	Introduction to Materials Science			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, aive the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
give the weekly country hours and the total creates		HOUKS		
Lectures		4	4	
Add rows if necessary. The organization of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE	General background			
general background, special background, specialized general knowledge, skills development	-			
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION	LECTURES IN GREEK, PRESENTATION IN			
and EXAMINATIONS:	ENGLISH/GREEK			
IS THE COURSE OFFERED TO	NO			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)	http://users.uoi.gr/nbarkoul/,			
	http://ecourse.uoi.gr/enrol/index.php?id=2036			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

One of the main objectives of the course is to familiarize the students with the fundamental concepts of Materials Science and Engineering which will be used as background knowledge for the understanding of specialized courses in the field of Materials Science and Engineering that follow. Thus, this course introduces the type of materials, structure, properties, characteristics, and applications, with special emphasis on the interrelationships among structure, properties & processing.

- Learning outcomes: Upon successful completion of the course, the student will be able to know and describe the structure of the different categories of materials, know the properties that characterize the behavior of materials, understand the type of loadings/environment that materials should withstand, determine the phases that are present, etc.
- Skills: Upon successful completion of the course, the student will be able to cite the four

components that are involved in the design, production, and utilization of materials, to develop classification diagrams of the materials, to develop stress-strain diagrams, phase diagrams etc.

• **Competences**: Combining the knowledge acquired during this course the student will be able to properly classify the materials, choose the most suitable material for a specific application, propose ways to change the structure / microstructure and the properties for a specific application, suggest testing methodologies for the characterization of different categories of materials, suggest modifications in the composition or processing temperature / heat treatment of an alloy to control the microstructure, suggest alterations in the geometry of a component so as to increase its service life. Overall, the students will be able to cope in an interdisciplinary environment where materials science and engineering is one of the key components in the synthesis, manufacturing, characterization, and design of materials.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim? Search for, analysis and synthesis of data and information, Project planning and management with the use of the necessary technology Respect for difference and multiculturalism Adapting to new situations Respect for the natural environment Decision-making Showing social, professional and ethical responsibility Working independently and sensitivity to gender issues Team work Criticism and self-criticism Working in an international environment Production of free, creative and inductive thinking Working in an interdisciplinary environment Production of new research ideas Others...

• Production of free, creative, and inductive thinking

• Search for, analysis and synthesis of data and information

(3) SYLLABUS

This course provides an introduction in the field of materials science and engineering and the essential background required to follow the specialized topics that follow. The content of the course is as follows:

- Historical Perspective
- Classification of Materials
- Understanding the relationships:
 - Processing / Structure / Properties / Performance
- Atomic Structure and Interatomic Bonding
- The Structure of Crystalline Solids
- Imperfections in Solids
- Mechanical Properties of Metals
- Failure
- Phase Diagrams
- Polymer Structures and mechanical behaviour
- Thermal Properties

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	In class, face-to face lectures
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory	Electronic presentations, use of ecourse platform
education, communication with students	

TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are	Lectures	39	
described in detail.			
fieldwork, study and analysis of biblioaraphy.	Tutorials/ essay writing	13	
tutorials, placements, clinical practice, art	Self-study	48	
workshop, interactive teaching, educational			
visits, project, essay writing, artistic			
The student's study hours for each learning			
activity are given as well as the hours of non-			
directed study according to the principles of			
the ECIS			
	Course total	100	
STUDENT PERFORMANCE	LANGUAGE OF EVALUATION: Greek		
EVALUATION	METHOD OF EVALUATION: Written exam at the end of		
Description of the evaluation procedure	the semester which is based	on theory and exercises	
Language of evaluation, methods of	developed during the course		
evaluation, summative or conclusive,			
multiple choice questionnaires, snort- answer questions, open-ended questions			
problem solving, written work,			
essay/report, oral examination, public			
presentation, laboratory work, clinical			
examination of patient, art interpretation,			
Specifically-defined evaluation criteria are			
given, and if and where they are accessible			
to students.			

(5) ATTACHED BIBLIOGRAPHY

-Suggested bibliography:

- Materials Science and Engineering, 9th Edition SI Version, William D. Callister, Jr., David G. Rethwisch, ISBN: 978-1-118-31922-2, 936 pages July 2014, ©2013
- Materials: Engineering, Science, Processing and Design, Michael F. Ashby, Hugh Shercliff, David Cebon, Butterworth-Heinemann, Feb 13, 2007 - Technology & Engineering - 528 page